January 11, 2017

Optimization Methods & Software paper

To appear in Optimization Methods € Software
Vol. 00, No. 00, Month 20XX, 1-18

Efficient computation of derivatives for solving optimization
problems in R and Python using SWIG-generated interfaces to
ADOL-C

K. Kulshreshtha,** S. H. K. Narayanan,” J. Bessac? and K. MaclIntyre®

@ Universitit Paderborn, Germany; °Argonne National Laboratory, Illinois, USA;
¢ Northwestern University, Illinois, USA

(Received 00 Month 20XX; final version received 00 Month 20XX)

Scripting languages are gaining acceptance because of their ease of use and value for rapid
prototyping in many fields, including machine learning and statistics. In the context of algo-
rithmic differentiation, however, the main development effort continues to be concentrated on
traditional compiled languages such as Fortran and C/C++, whether source transformation
tools or operator overloading tools. There is therefore a need for AD tools for computing
derivatives efficiently within scripting languages. ADOL-C is an operator overloading-based
C++ library that provides accurate first- and higher-order derivatives for applications in
C++. SWIG is a preprocessor that uses the C/C++ header files to wrap the API of a library
to be callable from scripting languages such as R and Python and several other high-level pro-
gramming languages. Although every language has its caveats, the overall process of making
the C/C++ API available via SWIG is the same for all scripting languages. After an initial
effort required per language, because SWIG is an automated interface generator based on
the library’s actual header files, only minimal effort is required to maintain the scripting
interface in sync with upstream developments in the original C/C++ library. In addition to
achieving our original goal of creating an interface for R, we were able to generate an inter-
face for Python that proved an order of magnitude faster the the previously implemented
interface. This paper gives an overview of the interface generation process, the challenges we
encountered with both scripting languages, and some numerical results to demonstrate both
usefulness and efficiency.

Keywords: Algorithmic Differentiation, Autodiff, Machine Learning, Stochastic
Optimization, Data Analysis, ADOL-C, Scripting, R, Python, SWIG

1. Introduction

Algorithmic differentiation (AD) [13] is a technique to compute derivatives of functions
represented as evaluation procedures efficiently and accurately with round-off error within
machine precision [12]. Various programming tools have been developed in the past to
compute derivatives of programs written in high-level languages such as Fortran, C and
C++. Such tools fall into two main categories. Some are built on a programming-language
parser and compiler in order to output augmented program code that will, when executed,
compute the desired derivatives along with the original output of the program. This tech-
nique is known as source transformation. Examples include Tapenade [14], ADIC2 [21],
OpenAD [25] and TAF [10]. Others rely on the capability of object-oriented programming

*Corresponding author. Email: kshitij@math.upb.de

January 11, 2017

Optimization Methods & Software paper

languages to overload operators and functions in order to perform additional tasks besides
those that they would for builtin datatypes. Naturally, these tools are called operator-
overloading tools. Prominent examples are ADOL-C [31], CppAD [5], dco/c++ [20], Adept
[15] and CoDiPack [22]. The community website http://www.autodiff .org provides fur-
ther information about tools and references on algorithmic differentiation.

High-level programming languages such as R and Python have become popular in fields
such as machine learning, statistics, and data analysis. Many data analysis problems can
be recast as familiar problems in nonlinear optimization. Indeed they often involve the op-
timization of a cost function; for instance, in the model-oriented framework of inferential
statistics, parameters of the model are estimated most of the time by minimizing a cost
function. Data assimilation is another example of problems involving the optimization of a
cost function; see [16]. Various other fields of research do not involve this type of optimiza-
tion although they still rely on the use of derivatives of objective functions. One example
is sensitivity analysis [17, 23]. Too often, however, the derivatives of these functions are
numerically approximated or coded by hand because a suitable AD tool is not available
for the chosen programming language. The use of finite-difference approximation can re-
sult in reduced performance; hand coding on the other hand, requires time-consuming and
error-prone maintenance of derivative computations. Furthermore, the burden of writing
derivative code may deter users from using more complicated functions or more sophisti-
cated solution algorithms.

R is a language and environment for statistical computing and graphics [34]. It is widely
used in statistics and data mining. To obtain derivatives in R, one can use several non-
native approaches, including the Template Model Builder system [39] and Ryacas [11].
However, none of these options support the differentiation of functions expressed as R
programs, as would an AD tool for R. Attempts to develop such a tool include radx [32].
This tool can compute first- and second-order forward-mode derivatives of univariate
functions, but it is no longer actively developed. Natively, inside R, the numDeriv pack-
age provides methods for calculating (usually) accurate numerical first- and second-order
derivatives [35]. Accurate calculations are done by using Richardson’s extrapolation, or,
when applicable, a complex step derivative is available; a simple difference method is also
provided. The deriv function from the stats package computes derivatives of simple ex-
pressions symbolically [33]. Since numerical finite-differences are not reliably accurate and
cannot compute adjoints (see [13]), there is a need to provide derivatives within R using
AD tools.

Python is a powerful object-oriented programming language that is widely used for rapid
prototype development including in data science and for other ad hoc programming tasks.
It is easily extensible by adding new modules implemented in a compiled language such as
C or C++. Support for symbolic derivative computation as well as finite difference approxi-
mations in Python is provided by the SymPy package [38]. This package is a general symbolic
manipulation tool, part of the SciPy family, which also includes NumPy and MatPlotLib
[36]. Numerical approximation of derivatives is also provided by the numdifftools pack-
age [8]. A package called theano for symbolic mathematics on CPU/GPU combinations
is also available [24]. Because Python is an object-oriented language, it lends itself easily
to the ideas of operator overloading. Therefore, a few extensions to operator-overloading
AD tools were written to provide derivatives for Python programs. Prominent among
these are PyADOLC and PyCppAD [26-28], which are both wrappers around the C++
implementations of ADOL-C and CppAD using the Boost Library’s boost: : python inter-
face. Another AD tool developed in Python using NumPy is AlgoPy [29]. A performance
comparison of AlgoPy with PyADOLC, numdifftools and theano was done in [30] and
the authors concluded that PyADOLC worked well for the applications under consider-

http://www.autodiff.org

January 11, 2017

Optimization Methods & Software paper

ation. Wrappers based on the Boost Library, however, require extensive manual updates
whenever the interface of the underlying C++ library changes or introduces new features.
Another drawback is that the Boost Library does not support similar interfaces for any
other language of interest. Thus, there is, a need to provide an automated mechanism for
interfacing ADOL-C to Python without requiring manual updates.

In this work we show how the AD tool ADOL-C can be interfaced with R and Python and
be used to efficiently compute derivatives for optimization, statistics and machine learning
problems expressed within those languages. We use the preprocessing and code generation
tool SWIG [2, 3] to generate the interfaces in an automated manner. This obviates, to a
large extent, the need for manual upkeep of the interfaces when updates to ADOL-C are
made. We have tested the approach in R with an implementation of a simplified statistical
model that produces surface wind speed prediction. We have also tested the approach
with Python applications that implement machine learning algorithms using stochastic
gradient descent and stochastic quasi-Newton.

The rest of the paper is organized as follows. In Section 2 we describe the preparation
required for SWIG to generate interfaces for ADOL-C. In Section 3 we show how to write
programs using the generated interfaces in both R and Python. In Section 4 we present
the statistical and optimization applications in R and Python that use the generated
interfaces. In Section 5 we summarize our conclusions and briefly describe future work in
this direction.

2. SWIG Interface Generator

SWIG was identified based on our need for creating an interface between ADOL-C and
the R and Python languages. Furthermore, we wanted to minimize the development time
required to maintain the interface every time the underlying ADOL-C API is changed,
whether new features are added to it or old ones removed or modified. SWIG is a software
development tool that connects library APIs written in C and C++ with a variety of
high-level programming languages. SWIG is typically used to parse C/C++ interfaces
and generate the “glue code” required for the target languages to call into the C/C++
code [2-4, 37]. It can generate interfaces for many different languages including R, Python,
TCL, and Octave. Important for this work, by using SWIG, an interface for ADOL-C can
be generated automatically during the build process of the ADOL-C library. Once the
interface generation with SWIG has been set up correctly for the intended target languages,
the generated interface will automatically contain all the new features and updates from
ADOL-C.

SWIG generates interfaces based on an input file (for example mymodule.i). This input
file consists of SWIG macros. A simple module may be defined by using the input file
in Figure 1(a). This will create a module with the name mymodule containing a wrapped
interface in the scripting language of choice for the C/C++ API declared in the file that is
given in the %include macro. In this case it is <myheader.h>. Actual C/C++ code is given
between the macro delimiters %{ and %}. This is the code required in order to compile and
link the generated interface with the original C/C++ library.

Other macros of importance are %ignore and %rename. These will cause SWIG to ig-
nore a certain C/C++ identifier name or rename it to something else for the generated
interface, respectively. These features are useful if these names contain characters that are
unsupported by the target language or include keywords or if wrapping these in the target
language is not desirable at all. An example is the ADOL-C driver function() that evalu-
ates the function value from trace (see [31]), which cannot be used in R because function is

January 11, 2017 Optimization Methods & Software paper

%module adolc
%module mymodule YA
w{ #include <adolc/adolc.h>
#include <myheader.h> YAS
¥ // many ignores and renames
%include "adolc_all.hpp”
%include <myheader.h> // generated by running
// C++ preprocessor

(a)
(b)

Figure 1. (a) SWIG input file for an simple example module; (b) skeleton ADOL-C SWIG input file.

a keyword in the R language. Therefore, we use the macro %rename (eval_func) function
; when declaring the R interface. Similarly the ADOL-C library exports an API callable
from Fortran, which is a copy of the C/C++ API. To export this to either Python or R
is not desirable, and therefore we use macros such as %ignore gradient_;.

One caveat in using the %include macro is that unlike the C/C++ preprocessor it
will read only the file named in the macro and will not recursively read any other files
that are #included inside this file. This feature is to prevent extraneous code from being
generated that wraps any system APIs that were #included in the C++ header file of a
library. This poses a challenge for processing ADOL-C via SWIG, however, because the
convenient header file <adolc/adolc.h> contains a large number of #include directives for
subsidiary headers, as well as required system headers. Applying the C+-+ preprocessor
directly, however, results in a file containing all the APIs from all the system headers as
well as all the subsidiary headers. We do not need to wrap the system APIs for the target
language, only the ADOL-C API. We therefore wrote a Python script that first excludes
all the system headers from the ADOL-C headers and then runs the C++ preprocessor on
it to temporarily produce a flat single header containing all ADOL-C APIs but no system
APIs. This file is then %included and processed with SWIG, and the generated sources
are compiled.

2.1 Interface to the R language

Contrary to our expectations SWIG did not generate a working interface from the input file
automatically. We encountered several difficulties when R was the chosen target language.
First, several API functions in ADOL-C require in-place modification of arrays given as
arguments. Generally, R programmers prefer to use the returned values from a function
as the output instead of modifying the input arguments. However, in-place modification is
the standard practice in C/C++ when multiple values need to be output. SWIG version
3.0.11 did not have the necessary mechanism for modifying the input arguments. We
therefore needed to modify the SWIG sources themselves and introduced %typemap (argout
) instructions as detailed in Section 11.5 of the SWIG documentation for considering 1D
and 2D arrays as in-place modifiable arguments in R. At the time of this writing, these
changes in the SWIG sources are not yet included in any official SWIG release or source
repository but can be expected in the future.

Another difficulty is imposed by the structure of the R language. It does not allow for
operator overloading in the same sense as C++ does. The C++ compiler generates addi-
tional code and lookup tables so that the correct operator or function can be chosen at
runtime, based on context in any expression, that is, dynamic dispatch. In R, the program-
mer is responsible for checking the arguments to any overloaded function or operator and

January 11, 2017

Optimization Methods & Software paper

dispatching the correct version. As a safeguard against inadvertent overloading of com-
mon mathematical operators, the SWIG-generated interface contains named functions for
such operators; for example, “Plus" is generated in R for the C++ operator +. To utilize
operator overloading correctly, we needed to modify the generated R source code to save
the existing definition of "+ as shown in the first line of Figure 2(b) and dispatch it if the
arguments are not the datatypes we expect for the ADOL-C library.

The generated code shown in Figure 2(a) works well if the mathematical operators take
only scalar arguments. Further changes were required to handle a real application involving
mathematical operators and function calls such as sin() and cos () and the list and matrix
data structures in R.

The function class used by the generated code returns the type of the variable for scalar
variables. For list and matrix variables, however, the function will return 1ist and matrix,
respectively, instead of the type of variables stored in the list or matrix. To overcome this
difficulty, we implemented a function called get_argtype () to return the required variable
type. Once the type is known, the generated code can correctly choose the C++ interface
function that should be called for these objects. The interface functions, however, accept
only scalar arguments. Therefore, instead of calling the interface function directly, we call
a helper routine adolc_operator_dispatch() or adolc_dispatch() to dispatch the function
call based on the data structure as well. For example, if sin(arg) is called where arg is a
list, the dispatch function will iterate over elements of the list, call sin() for each element
and add the result of each call to a new list that is then returned. A peculiarity of R
prevents a similar approach for a matrix argument. R allows a matrix to be made up
of only nonclass elements. Therefore, when sin(arg) is called where arg is a matrix, the
dispatch function will iterate over elements of the matrix. call sin() for each element and
place the result in a list containing only that result. The resulting matrix is composed of
these lists containing only one element.

One drawback of this dispatch code, however, is that it makes the use of overloaded
operators and functions rather slow during the creation of the trace for ADOL-C. But
we were unable to find any alternative way to dispatch the functions and operators more
efficiently.

2.2 Interface to Python and NumPy

Using the experience in creating an interface between R and ADOL-C, we were able to
create an interface for ADOL-C and Python. SWIG has been used extensively to generate
Python interfaces to C++ software, for example, in the FEniCS project [1, 18, 19]. There
are differences, however, in the way Python and C++ deal with intermediate results, as well
as how array data structures are handled in NumPy, the numerical mathematics module in
Python. In C++, the assignment operator can be overloaded to account for the temporary
intermediate adub objects that are allocated on the stack with short lifetimes. In Python,
the assignment operator cannot be overloaded, and all objects must be allocated on the
heap. This difficulty is straightforward to handle; we can simply %ignore the operators
defined in C++ and write simple one-line wrappers that will return a heap-allocated adub
* instead of a stack-allocated adub using a special typecast operator defined in ADOL-C.
Python’s own garbage collection mechanism deals with the resulting memory.

Arrays in Python are handled as numpy.array or numpy.ndarray objects. The NumPy
authors have provided a SWIG input file numpy.i containing the specific typemaps for
converting a C/C++ array argument given as a pointer and its size in a separate function
argument. However, these work only if each such array has its own size right next to it.

January 11, 2017

Optimization Methods & Software paper

“oldplus®™ <- “+°
“+° <= function(...) {
argtypes <- get_argtypes(...);
argv <- list(...);
argc <- length(argtypes);
dispatch functions
if (argec == 1) {
if (extends(argtypes[1],
f <- Plus__SWIG_O;
} else {
f <- oldplus;
}
} else if (argc == 2) {

“Plus” <- function(...) {
argtypes <- mapply(class, list(...));
argv <- list(...);
argc <- length(argtypes);
dispatch functions
if (argec == 1) {
if (extends(argtypes[1], '_p_badouble’) &&
length(argv[[1]]) == 1) {
f <- Plus__SWIG_O;
}
} else if (argc == 2) {
if (extends(argtypes[1], '_p_badouble’) &&

'_p_badouble’)) {

length(argv[lgl]]) == 1 gf& extends (— if (extends(argtypes[1], '_p_badouble’) &&
argtypes(2], '_p_badouble’) && length(argv extends(argtypes[2], '_p_badouble’)) {
[552]3—) P=1T1s1)s€11(; 1; £ o Pus Swie
} elee { - -4 } else if (# other argument checks) {
ese # many such cases ...
many such cases ... } else {
}
< .
} olse {) f oldplus;
stop("cannot find overloaded function for Plus } else {
with argtypes (”,toString(argtypes), ”)"); f <- oldplus;
}; ’
£(C...); .
} return(adolc_operator_dispatch(..., f=f));

}

(a) (b)

Figure 2. (a) Generated R interface source; (b) manual modification for operator overloading.

In ADOL-C, most drivers take several array arguments with the size, either the number
of dependents or number of independents, and these sizes are known from the trace. For
all such functions to be able to interpret and return NumPy arrays properly, some simple
wrappers are again required, with modified C++ signatures. A few such signatures are
shown in Figure 3. These wrappers are written purely in C/C++, and the maintainer does
not need to write any Python code or use any Python or NumPy API for C.

2.3 Maintenance effort for future API changes

The amount of effort to maintain the interfaces depends on the kind of API changes in the
original C++ library. If the old API is simply removed or some simple driver functions are
added in the header files of the library, these will be automatically taken care of by the
SWIG modules. Similarly new classes and their member functions will be automatically
wrapped in the SWIG modules, without needing any manual changes. Simple manual
changes may be required, however, if there are name clashes in the target language, for
example, using the %rename directive.

For compatibility with NumPy, overloaded operators or functions declared in C4++ as
friend to a certain class could require a redeclaration as a member function in the target
language using the %extend directive, which enables one to declare additional member
functions in any class, just for the current target language. These redeclarations are just
one line of code for each original function or operator. If a new API function requires
compatibility for arguments as NumPy arrays, a small wrapper with a NumPy-aware
parameter declaration and memory allocation needs to be written in C++ by the library
maintainer, similar to the ones that have already been written for the current API. The

January 11, 2017 Optimization Methods & Software paper

void npy_gradient(short tag,
int gradient(short tag, int n, double* x, int nO,
doublex x, // sizen double** g, int* nl);
double* g); // sizen // *nl = n, from trace
// g preallocated // g allocated € returned to python
int jacobian(short tag, int m, void npy_jacobian(short tag,
int n, double* x, int nO,
double* x, // size n double** J, int* mil,
doublex* J); // size m, n int* nl);
// J preallocated // *ml =m &€ *nl = n, from trace
int vec_jac(short tag, int m, // J allocated € returned to python
int n, void npy_vec_jac(short tag, int repeat,
doublex* x, // size n double* x, int nO,
doublex v, // size m doublex v, int mi,
doublex w); // sizen double** w, int* nl);
// w preallocated // *nl = n, from trace
// w allocated € returned to python

(a)
(b)

= gradient (tag,x)
= jacobian(tag,x)
jac_vec(tag,repeat,x,v)

(c)

£ & 0”
I

Figure 3. (a) ADOL-C drivers with original signatures; (b) their NumPy array-aware wrapper signatures; (c)
their usage in Python.

number of lines of code is proportional to the number of arguments in the new API
function.

Major interfacing effort is needed only for inheritance of classes, when a class is designed
to be a parent class in the target language interface. The code generation for R in SWIG
does not currently support the key functionality called a director class. Therefore, the
facility of external functions is currently still under development. Because we have adopted
the use of custom helper routines for calling interface functions based on the type of
variables and their shape, we must modify the generated R code every time the interface
is regenerated. These changes are mechanical, however, and limited to small portions of
the generated code. Indeed they may be done by using a small patchfile for the generated
R code, with only this patchfile requiring maintenance for future API changes.

3. Using the Generated Interface

In this section we describe how to use the interfaces to ADOL-C in R and Python. Drivers
for both R and Python are similar to ADOL-C drivers in C/C++. Minor changes are
required to the code being differentiated, because of limitations in the interfaces, name
clashes, and peculiarities in the underlying language.

3.1 Using ADOL-C-computed derivatives in R

Figure 4 shows the usage of ADOL-C in R to solve an optimization problem using the
R optimization routine optim. This routine uses an argument gr to accept a function to
return the gradient for the BFGS, CG and L-BFGS-B methods. If gr is NULL, a finite difference
approximation will be used. ADOL-C is used to construct a function that will provide the
gradients to optim. The first step is to load the ADOL-C library through the commands

January 11, 2017

Optimization Methods & Software paper

source ('init_adolc.R")
Download the data
source ('ExamplesOnData/ DownloadData.r")

Functions

n <- 12

cov_emp <- var(ws.nwp.JAN12[,1:n])
Lat <- c(Lat_grid0[1:n])

Long <- c(Long_grid0[1:n])

fr <- function(x,cov_emp,Lat,Long){
n <- length(Lat)
s0 <- 0
for (k in 1:n){
for (1 in 1:n){
sO <- s0 + (cov_emplk,1] - ((x[1] + x[2]*Lat[k] + x[3]*Longlkl)* (x[1] + x[2]*Lat[1] + x
[3]1*Long[1])*exp(-x[4]*(Lat [k]-Lat[1])~2)*exp(-x[5]*(Long[k]-Long[1])~2)))~2 }}
s <= s0

s }

trace_on(1)

x <- c(adouble(0.1),adouble(0.1),adouble(0.1),adouble(0.1),adouble(0.1))
badouble_declareIndependent (x)

y <- fr(x,cov_emp=cov_emp,Lat=Lat,Long=Long)
badouble_declareDependent (y)

trace_off ()

frADOLC <- function(x,cov_emp,Lat,Long) {
XX <- X
yy <- ¢(0.0)
eval_func(1,1,5,xx,yy);
vy }

Gradient of ’fr’

grrADOLC <- function(x,cov_emp,Lat,Long) {
Xx <- X
yy <~ ¢(0.0,0.0,0.0,0.0,0.0)
gradient(1,5,xx,yy);
vy }

General purpose optimization call using adolc gradient
res <- optim(par=c(.1,.1,.1,.1,.1), fn=frADOLC, gr=grrADOLC, cov_emp=cov_emp,Lat=Lat,
Long=Long, method = "L—BFGS—B”, control = list(type = 3, trace = 2))

Figure 4. Code for optimizing a function in R using ADOL-C derivatives.

written in the file init_adolc.R provided for this purpose. In this example, the function fr
is the computation being differentiated. It is called by using input that is read from a data
file. The differentiation process requires fr to be traced. Tracing is achieved by placing a
call to fr between the usual trace_on(1) and trace_off () commands. Additionally, func-
tion calls badouble_declareIndependent (x) and badouble_declareDependent(y) are used
to identify the independent and dependent variables, respectively. The function frADOLC
is written to invoke the ADOL-C-provided routine eval_func() to efficiently compute the
original function. The function grrADOLC is written to invoke the ADOL-C-provided routine
gradient () and return the result. Then, optim is invoked with the argument expressions
fn=frrADOLC and gr=grrADOLC to make optim use the ADOL-C-generated gradients.

January 11, 2017 Optimization Methods & Software paper

adolc.trace_on(1)
adarray = adolc.as_adouble(array)

import sys, os for item in iter(adarray):
sys.path.insert (0, item.declareIndependent ()
os.path.abspath(’./.. /ADOL—C/swig/python’
)) # Perform main computation that computes ay
import adolc

ay.declareDependent ()
(a) adolc.trace_off ()

(b)

Figure 5. (a) Importing the ADOL-C SWIG module in Python; (b) creating the trace of a function in Python.

secondSum = numpy.sum(numpy.cos(2.0*math.pi*array[:len(array)]))
secondSum += math.cos(2.0*math.pi*chromosome[c])

(a)

secondSum = numpy.sum(numpy.cos(2.0*math.pi*adarray[:len(adarray)]))
secondSum += adolc.cos(2.0*math.pi*adchromosome[c])

(b)

Figure 6. (a) Original Python computation. (b) Python computation with ADOL-C.

3.2 Using ADOL-C-computed derivatives in Python

The built SWIG module files adolc.py and _adolc.so must be in the user’s Python system
path so that the module may be imported. One may add any given path to this path using
the code shown in Figure 5(a). Straightforward changes to a driver routine also are needed
in order to create an ADOL-C trace of the required function, as shown in Figure 5(b).
Then the driver may call any derivative computation routine, a few examples of which are
shown in Figure 3(c).

A few other changes may be required in the computation routines. Consider the lines
of code in Figure 6(a). Any mathematical functions called, such as math.cos, must be
rewritten using the equivalent ADOL-C functions, in this case adolc.cos. However, if a
function is performed on the whole array using numpy, such as numpy. cos, the code remains
unchanged, because numpy can automatically call the overloaded functions from adolc. The
resulting new code is shown in Figure 6(b).

4. Applications

In this section we present two applications in which the procedures described in Section
3 are applied to two testing examples. In Section 4.1 an application in R is introduced
for a statistical model that was initially built for space-time prediction of surface wind
speed. This application involves optimizations of a least squares cost function; several
configurations of the optimization routine are compared and discussed. In Section 4.2
we introduce machine learning applications that use the stochastic gradient descent and
stochastic quasi-Newton algorithms. For these applications, we compare the performance
of PyADOLC derivative code and the SWIG interface to the latest ADOL-C version.

January 11, 2017

Optimization Methods & Software paper

260
180

44
I

20140

.

43
L

Latitude
42
| |

41

40

150

%\;7
T
-90 -89 -88 -87 -86

Longitude

Figure 7. Map of the considered area (Midwest; visible are Lake Michigan and the states of Michigan, Illinois,
Indiana, and Wisconsin): clusters are depicted with different colors: in black are the 11 stations of sub-region C1,
in red the 12 stations of C2 and in green the 8 stations of Cs.

4.1 Space-time Gaussian process for wind speed in R

This application is motivated by a statistical model that fuses two datasets of atmospheric
wind speed in order to provide a statistical prediction of wind speed in space and time
[6]. The two datasets under consideration are numerical weather forecast model outputs
and ground measurements of wind speed in the Great Lakes region (see Figure 7). In this
context, these two datasets are assumed to be realizations of two space-time Gaussian
processes. One purpose of the work in [6] is to specify the joint distribution of these
two processes and then generate a prediction of wind speed from this distribution. The
joint process has a Gaussian distribution whose mean and covariance are parameterized
in space and time through hyperparameters. In [6], the statistical model is calibrated
on the two datasets by maximum likelihood. Maximum likelihood estimation aims to
maximize the probability of obtaining the studied data, when this probability results
from the selected distribution model. Because of the sensitivity to initial conditions of
the maximum likelihood procedure, the optimization of the likelihood is initialized with
parameters obtained by a least squares estimation between empirical quantities (mean and
covariance) and the proposed parametric ones.

In the present work, we consider simpler parametric shapes to focus more on the com-
putational aspects than on the modeling ones. Furthermore, we focus on the subregion Co
depicted in red in Figure 7 and on the month of January 2012. We simplify the framework
proposed in [6] by considering a single dataset: the physical model outputs. Moreover, we
fit a Gaussian process only along the spatial dimension; we then fit a space-time mean to
the dataset. Gaussian processes are characterized by their first- and second-order moments;
consequently we focus here on the mean and covariance structures.

The likelihood optimization requires computing the inverse of the covariance matrix,
which in R can be done by using the function solve. This presents a problem, however,
because the arguments to solve must be of numeric, complex or logical type. A check
within solve throws an error if the arguments are of adouble type, which precludes the use
of the ADOL-C interface. In the future, we will support the use of external functions to
provide user-written derivative code for solve. For the present, in this work the proposed

10

January 11, 2017

Optimization Methods & Software paper

models are fitted by a least squares estimation instead, which does not require the use of
solve.

4.1.1 Spatial example

First, we focus only on modeling along spatial coordinates; the temporal dimension is not
accounted for here. The parametric spatial mean and covariance are fitted on the empirical
ones by an ordinary least squares estimation. The following parametric mean is proposed
to be fitted on the empirical mean wind speed:

p(s) = ag + aqLat(s) + asLong(s) + asLat(s)? + ayLong(s)?, (1)

where s denotes the spatial location and Lat and Long denote the latitude and longitude
coordinates, respectively. The parameters ag, a1, a9, az, and ay4 are estimated by least
squares using optim and a cost function between the empirical mean and the proposed
parametric one in (1); the cost function is similar to the one shown in Figure 4. For
the optimization with the derivatives obtained from ADOL-C, we follow the procedure
described in Section 3.1.

The parametric covariance is chosen as

Y (si,85) = o(s;)o(sj) exp(—Bs(Lat(s;) — Lat(s;))? — Ba(Long(s;) — Long(s;))?), (2)

with o(s;) = Bo+p1Lat(s;)+ Pz Long(s;). Similarly By, 51, 2, f3, and 54 are the parameters
that are estimated by a least squares procedure.

The fitted and empirical shapes are depicted in Figure 8. We expect the proposed para-
metric structures and the empirical one to match as much as possible in shape and intensity.
We note that both the parametric mean and correlation structures capture a great part of
the spatial features of the empirical mean and correlation. The fitted correlation displays
higher dependencies (these are seen in [6]), but most of the spatial structure is captured.

In this example, the optimization has been performed in four ways: with optim, which
uses the internal finite differences derivatives; with optim when the user provides the
gradient computed from numDeriv; with optim using derivatives from ADOL-C; and with
optim using the analytical derivatives. The four methods lead to similar results in terms
of quality of fitting, but the times to compute are significantly different, as seen in Table
1. In this example, we optimize along the vector x = (ag, a1, a9, a3, aq) of dimension
5. In this case the size of the x does not increase; however, the size of the wind speed
dataset increases in terms of spatial locations added. We observe that the optimization
with ADOL-C derivatives exhibits a time increase of 425% when the amount of data
doubles; however, the method with the internal finite differences derivatives shows an
increase in the time of only 60%. The two other methods have a time increase of more
than 300%. In absolute terms, however, ADOL-C is the fastest approach. Table 1 does not
report, however, the time for tracing the cost function for ADOL-C. Table 2 reports this
with increasing numbers of stations. These values are higher than any of the computation
times in Table 1 because of inefficiency caused by loop iterations in the manually written
dispatch functions, described in Section 2.1.

4.1.2 Space-time example

We now fit the parametric space-time mean proposed in [6, Equation (14)] by a least
squares estimation using the derivatives from ADOL-C and the procedure described in

11

January 11, 2017

Optimization Methods & Software paper

Q —— Empirical mean

E_ | — Fitted mean (ADOLC)

3

&

e}

£

s

s

c

3

=

26 18 8 22 14 31 13 20 11 23 29 2
Station
(a)
Empirical spatial correlation Fitted spatial correlation

Station

26 18 8 22 14 31 26 18 8 22 14 31 13 20 11

Station Station
(b)

Figure 8. (a) Empirical (black) and fitted (red) mean of the wind speed at the locations of the subregion C2
estimated in January 2012; (b) empirical (left) and fitted (right) parametric spatial correlation of the wind speed.

13 20 11 23 29 2 23 29 2

Table 1. Time in s for the estimating the parameters of the parametric spatial mean depicted in panel (a) of
Figure 8. The number of parameters to be estimated is constant and equals 5; the number of stations studied
increases.

of Stations ADOL-C numDeriv Internal FD Analytical
6 0.0017 0.004 0.005 0.001
8 0.0016 0.005 0.006 0.001
10 0.0018 0.006 0.007 0.001
12 0.0028 0.020 0.008 0.004

Table 2. Time for tracing the cost function used to fit the parametric spatial mean depicted in Figure 8. The
number of parameters to be estimated is constant and equals 5; the number of stations studied increases.

of Stations 6 8 10 12
Time (s) 0.028 0.034 0.040 0.049

12

January 11, 2017

Optimization Methods & Software paper

— Empirical
— Fitted

Mean of wind speed (m/s)
7

Station 26 Station 18 Station 8 Station 22 Station 14 Station 31 Station 13 Station 20 Station 11 Station 23 Station 29 Station 2

Figure 9. Empirical (black) and fitted (red) parametric mean of wind speed at each hour of a day and at each
station in the subregion C2 in January. Vertical lines separate each station. Within each of these windows, each
hour of the day is considered.

Table 3. Time in s for estimating the parameters of the parametric space-time mean depicted in Figure 9. The
number of parameters to be estimated (left column) increases with the number of stations studied (in parentheses
in the left column).

length(x) (# of Station) ADOL-C numDeriv Internal FD Analytical
13 (6) 0.0017 0.32 0.47 0.03
15 (8) 0.0018 0.38 0.58 0.03
17 (10) 0.0018 0.56 0.84 0.04
19 (12) 0.0028 0.85 1.29 0.05

Table 4. Time in s for tracing the cost function used to fit the parametric space-time mean depicted in Figure 9.
The number of parameters to be estimated (top row) increases with the number of stations studied (in parentheses
in the top row).

length(x) (# station) 13 (6) 15 (8) 17 (10) 19 (12)
Run time (s) 0.03 0.03 1.62 1.99

Section 3.1. The parametric structure is simplified here for practical purposes and does
not account for the land use, namely, the parameter that describes the nature of the land
for a considered grid point. We show visually in Figure 9 the quality of the fitting. We
see that both curves match well, indicating that the proposed parametric mean captures
most of the space-time structure of the mean of the wind speed.

Similar to the preceding spatial example, we compared the optimization process with
different gradient inputs. The four optimizations led to similar results in terms of quality
of the fitted mean; however, the run times were significantly different. In Table 3, we show
the compute time when these least squares optimizations are performed. The proposed
parametric shape has a parameter specific to the spatial location. Consequently, increasing
the size of the dataset necessitates increasing the size of the vector to optimize along,
contrary to Table 1. We notice here that the compute times with ADOL-C derivatives are
considerably smaller than those of numDeriv and internal derivatives. The rate of increase
in time with ADOL-C is also lower that of the other two methods. Indeed, as the size of
doubles, optim with its internal derivatives shows an increase in time of 174%, optim with
derivatives from numDeriv is 166% slower and the method with the analytical gradient
reveals an increase in time of 67%, whereas the time with derivatives from ADOL-C
increases by 65%. Table 4 reports the time taken for tracing the cost function.

13

January 11, 2017

Optimization Methods & Software paper

4.2 Stochastic gradient descent and stochastic quasi-Newton in Python

Models in machine learning applications are trained by using optimization algorithms. In
some applications, a full-batch (sample average approximation) approach is feasible and
appropriate. In most large-scale learning problems, however, one must employ stochastic
approximation algorithms that update the prediction model based on a relatively small
subset of the training data [9]. Stochastic gradient descent (SGD) and stochastic quasi-
Newton (SQN) are two such optimization algorithms.

SGD is a machine learning algorithm that aims to find the global optimum of an objective
function by updating a weight vector following the negative gradient of the objective. SGD
normally updates using only one data point, but it can also use a small batch of sample
data points (often called mini-batch gradient descent). The algorithm for SGD runs for
a user-supplied number of iterations, on each iteration finding the gradient with respect
to the current weights and a randomly selected batch of the data and then updating the
weights according to this gradient and a dynamic learning rate, which gets smaller as the
algorithm converges to the optimal value.

The SQN method is similar to SGD, also incorporating curvature estimates to increase
the rate of convergence. The Hessian-vector product can be used to compute these curva-
ture estimates. The SQN method has four main steps. First, for every iteration specified
by the user, a random sample of the correct size from the test set is chosen. Second, as
in SGD, the stochastic gradient is calculated. Third, the weight vector is updated using
the curvature estimate, if it has already been calculated, to alter the direction of the up-
date if necessary. Fourth, every certain number of iterations, the correction pairs for the
curvature estimate are updated with the Hessian-vector product of the current weights,
another batch of data, and the change in the weight vector.

We have used an implementation [7] of the SGD and SQN approaches outlined in [9].
The code already computed fast and exact analytic gradients for the loss functions. We
differentiated the loss functions in the code using PyADOL-C and the ADOL-C interfaces
generated using SWIG (SWIG/ADOL-C). We compared their performance by measuring
the total amount of time for calculating every gradient and Hessian-vector product the
code needs to use. We tested the times over a wide variety of data subsets, using different
numbers of samples and attributes for those samples. The elements of each subset used
in each step were taken from a pregenerated random set of sample indices, so that the
objective found by each function and the times that were recorded could be reasonably
compared.

Figure 10(a) compares the performance of the application using SGD where the deriva-
tives are obtained by using either PyADOLC or SWIG/ADOL-C. The time taken to
compute the original function being differentiated are shown for comparison. For clar-
ity, the time taken for derivative computation using SWIG/ADOL-C and the time taken
to compute the original function being differentiated are shown in Figure 10(b). Clearly
SWIG/ADOL-C is significantly faster than PyADOLC. We attribute some of this perfor-
mance gain to the new features in ADOL-C that obviate the need for retracing the code
being differentiated. However, the glue code generated by SWIG and the handwritten
boost: :python code are also vastly different. Similar behavior is observed in Figures 10(c)
and 10(d) when the application employs SQN.

Next, we varied the number of attributes in the problem. Figures 11(a) and 11(c) show
the large time difference for computing gradients using PyADOLC and SWIG/ADOL-C for
SGD and SQN, respectively. For clarity, the SWIG/ADOL-C results are shown separately
in Figures 11(b) and 11(d).

14

January 11, 2017

Optimization Methods & Software paper

SGD Time Comparison SGD Time Comparison Zoom
12 B B T °
1 o= °
- - 1r ! 7
C))
2 1 £
5 S o8 / il
© 4 S &
e PyadolC - < i
2 40 SWIG/ADOLC -&- | 2 o6} SWIG/ADOLC -i i
bl Function = 8 Function -t
o o
30 B
g £ ool]
g 20 . g
° S P " A PR S PN
02 - 4
10 B ”
[P — P @ococoo P Rocoooo a P 0 . I I I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 [500 1000 1500 2000 2500 3000 3500 4000
Number of data points Number of data points
(a) SGD PyADOLC and SWIG/ADOLC (b) SGD SWIG/ADOLC
SQN Time Comparison SQN Time Comparison Zoom
1.4 T T T T T T T
-o- © g et ©.
12 -o-- o
- 7 — P-" °
g G .
8 g 1t R
g 1 g :
K % osld
o PyadolC -3¢~ 5, -8 1
s 30 SWIG/ADOLC -&- by SWIGIADOLC -
2 Function = e o6lb unction e~ |
g g
=S 20 - =
® T 04 4
S <] !
2 IS i " A — S A
10 1 0.2 if 1
Y ¥ — Secccooo 2 & & Qococooo Py 0 | | . I I I I
0 500 1000 1500 2000 2500 3000 3500 4000 [500 1000 1500 2000 2500 3000 3500 4000
Number of data points Number of data points
(c) SQN PyADOLC and SWIG/ADOLC (d) SQN SWIG/ADOLC

Figure 10. Performance results for SQN and SGD using PyADOLC and SWIG/ADOL-C using 1,776 attributes.
The x-axis shows how many data points were used in the subset tested. The dashed lines are results using the
SWIG/ADOLC, the solid lines with PyADOLC.

5. Conclusions and Further Work

We have successfully generated interfaces for the ADOL-C library, an operator overloading
AD tool, for the scripting languages R and Python. The software development tool SWIG
was used to generated the interface in a mostly automated manner. SWIG preprocesses
C/C++ header files and generates C++ glue code between the target language and the
original library, which is then compiled and linked to the original library. Some initial
preparation of input files and massaging of the generated code for our purposes was re-
quired, but these are fairly mechanical. Thus, only minimal maintenance effort is required
to keep these scripting interfaces to the library current and in sync with the developments
in the C/C++ code of the library.

The use of ADOL-C in R to compute derivatives for an optimization problem leads to a
huge performance improvement in the optimization routine over the default method that
uses numerical approximation. Indeed the ADOL-C-computed derivatives perform just as
well as manually programmed derivative code, which is intractable and error prone as
the problems become more complex and also if higher-order derivatives are needed. The
tracing of the cost-function, although, remains slow due to limitations in the language.
This is however in most cases a one time process, and traces can be made persistent over
multiple sessions.

Similarly, the use of ADOL-C in Python to generate derivatives for machine learning
applications leads to a performance improvement over the existing Python interface. Some
of this can be attributed to the use of new features in the ADOL-C library, which are not
available in PyADOLC, which uses a somewhat older version of the C++ library because

15

January 11, 2017 Optimization Methods & Software paper

SGD Time Comparison SGD Time Comparison - SWIG
80 T T T T T T 14 T T T T T T T
70 - 1 12|]
T 60l 1 z
% s Attributes %
g | 500 §?§ vl g o8l Attributes |
o af 1776 (P) - 3 500(8) &
k] 10 (S) & e o6 1776 253 <
£ a0l 500 () & | £
= 1776 (S) 3 o4l]
e 20 4 °
10 f/" i 02| J
/ — £
ot 2 dy 0 L L L L . . .
500 1000 1500 2&0 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of data points Number of data points
(a) SGD PyADOLC and SWIG/ADOLC (b) SGD SWIG/ADOLC
SQN Time Comparison SQN Time Comparison - SWIG
80 T T T T T T T 14 T T T T T T T
70 | 7 1.2 L b
@ 60| | z
é I Attributes %
] L 5(1)8 5;; ;o(_— 1 S o8l Attributes
S 40l 1776 (P) R 2 588 ‘2’ =
2 10 (S) & & 6 (S) o
o o 06 1776 (S) g
E 30| 500 (S) - £
= 1776 (S) = o
E g 04 4
e 204 4 e
2 4
% 1 0 & a
ol - -)
0 500 1000 1500 2000 2500 3000 3500 4000 0 500 1000 1500 2000 2500 3000 3500 4000
Number of data points Number of data points
(c) SQN PyADOLC and SWIG/ADOLC (d) SQN SWIG/ADOLC

Figure 11. Performance results for SQN and SGD using PyADOLC and SWIG/ADOL-C using different numbers
of attributes. The different colors represent how many attributes from the data set were used in that test, as
described in the legend, and the x-axis shows how many data points were used in the subset tested.

of the requirement for updating the boost: :python-based code manually in PyADOL-C
to track the changes in the underlying C/C++ code.

Because of limitations in the current version of SWIG, however,some features of ADOL-
C are not yet available in the scripting languages. We will continue to develop the interface
for R to support user-provided derivative code for functions that cannot be overloaded.
Such functions are supported in the C4++ version of the ADOL-C library using the so-
called external functions. The major development effort in this regard will be to manually
write glue code to connect the external function’s API to the R interface. We will also
look at other high-level languages supported by SWIG and provide interfaces to ADOL-C
in these languages for use by interesting applications being developed in those languages.

Acknowledgments

We thank Prasanna Balaprakash, Paul Hovland, Joseph Wang, and Richard Beare for
their suggestions.

Funding

This work was funded in part by a grant from DAAD Project Based Personnel Exchange

Programme and by support from the U.S. Department of Energy, Office of Science, under
contract DE-AC02-06CH11357.

16

January 11, 2017

Optimization Methods & Software paper

References

[1] M.S. Alnges, J. Blechta, J. Hake, A. Johansson, B. Kehlet, A. Logg, C. Richardson, J. Ring, M.E.
Rognes, and G.N. Wells, The FEniCS Project Version 1.5, Archive of Numerical Software 3 (2015).

[2] D.M. Beazley, SWIG : An Easy to Use Tool for Integrating Scripting Languages with C and C++,
in the 4th Annual Tcl/Tk Workshop, Monterey, CA (1996), Available at http://swig.org/papers/
Tcl96/tc196.html.

[3] D.M. Beazley, Using SWIG to control, prototype, and debug C programs with Python, in the 4th
International Python Conference, Livermore, CA (1996), Available at http://swig.org/papers/
Py96/python96.html.

[4] D.M. Beazley and P.S. Lomdahl, Feeding a Large-Scale Physics Application to Python, in the 6th
International Python Conference, San Jose, CA (1997), Available at http://swig.org/papers/
Py97/beazley.html.

[5] B.M. Bell, CppAD: A package for differentiation of C++ algorithms, http://www.coin-or.org/Cp-
pAD/Doc/cppad.htm.

[6] J. Bessac, E.M. Constantinescu, and M. Anitescu, Stochastic simulation of predictive space-time
scenarios of wind speed using observations and physical models, arXiv preprint arXiv:1511.09416
(2016).

[7] A. Bou-Rabee, https://github.com/nitromannitol/stochastic-quasi-newton.

[8] P.A. Brodtkorb, Numdifftools, https://pypi.python.org/pypi/Numdifftools.

[9] R.H. Byrd, S.L. Hansen, J. Nocedal, and Y. Singer, A stochastic quasi-Newton method for large-
scale optimization, STAM Journal on Optimization 26 (2016), pp. 1008-1031, Available at http:
//dx.doi.org/10.1137/140954362.

[10] R. Giering and T. Kaminski, Applying TAF to generate efficient derivative code of Fortran 77-95
programs, in Proceedings of GAMM 2002.

[11] R. Goedman, G. Grothendieck, S. Hpjsgaard, and A. Pinkus, Ryacas - An R interface to the YACAS
computer algebra system, http://cran.r-project.org/web/packages/Ryacas/vignettes/Ryacas.
pdf (2014).

[12] A. Griewank, K. Kulshreshtha, and A. Walther, On the numerical stability of algorithmic differen-
tiation, Computing 94 (2012), pp. 125-149, doi:10.1007/s00607-011-0162-z.

[13] A. Griewank and A. Walther, Principles and Techniques of Algorithmic Differentiation, Second
Edition, STAM, 2008.

[14] L. Hascoet and V. Pascual, The Tapenade automatic differentiation tool: Principles, model, and
specification, ACM Trans. Math. Softw. 39 (2013), pp. 20:1-20:43.

[15] R.J. Hogan, Fast reverse-mode automatic differentiation using expression templates in C++, ACM
Trans. Math. Softw. 40 (2014), pp. 26:1-26:16.

[16] E. Kalnay, Atmospheric Modeling, Data Assimilation and Predictability, Cambridge University Press,
2003.

[17] M. Lamboni, B. Iooss, A.L. Popelin, and F. Gamboa, Derivative-based global sensitivity measures:
General links with Sobol’ indices and numerical tests, Mathematics and Computers in Simulation
87 (2013), pp. 45-54.

[18] A. Logg and G.N. Wells, DOLFIN: Automated Finite Element Computing, ACM Transactions on
Mathematical Software 37 (2010), doi:10.1145/1731022.1731030.

[19] A. Logg, G.N. Wells, and J. Hake, DOLFIN: A C++/Python finite element library, in Automated
Solution of Differential Equations by the Finite Element Method, Lecture Notes in Computational
Science and Engineering, Vol. 84, chap. 10, Springer, 2012.

[20] J. Lotz, K. Leppkes, and U. Naumann, dco/c++ - Derivative Code by Overloading in C++, Tech.
Rep. 2011,06, Aachener Informatik-Berichte, 2011.

[21] S.H.K. Narayanan, B. Norris, and B. Winnicka, ADIC2: Development of a component source
transformation system for differentiating C and C++ , Procedia Computer Science 1 (2010), pp.
1845-1853, ICCS 2010.

[22] M. Sagebaum, T. Albring, and N.R. Gauger, CoDiPack, http://www.scicomp.uni-kl.de/software/-
codi/.

[23] A. Saltelli, M. Ratto, T. Andres, F. Campolongo, J. Cariboni, D. Gatelli, M. Saisana, and S. Taran-
tola, Global Sensitivity Analysis: The Primer, Wiley, 2008.

[24] Theano Development Team, Theano: A Python framework for fast computation of mathematical
expressions, arXiv e-prints abs/1605.02688 (2016), Available at http://arxiv.org/abs/1605.02688.

[25] J. Utke, U. Naumann, M. Fagan, , N. Tallent, M. Strout, P. Heimbach, C. Hill, and C. Wunsch,

17

http://swig.org/papers/Tcl96/tcl96.html
http://swig.org/papers/Tcl96/tcl96.html
http://swig.org/papers/Py96/python96.html
http://swig.org/papers/Py96/python96.html
http://swig.org/papers/Py97/beazley.html
http://swig.org/papers/Py97/beazley.html
https://pypi.python.org/pypi/Numdifftools
http://dx.doi.org/10.1137/140954362
http://dx.doi.org/10.1137/140954362
http://cran.r-project.org/web/packages/Ryacas/vignettes/Ryacas.pdf
http://cran.r-project.org/web/packages/Ryacas/vignettes/Ryacas.pdf
http://arxiv.org/abs/1605.02688

January 11, 2017

Optimization Methods & Software paper

[26]
27]

28]
[29]
[30]
31]

32]
33]

34

36
3
38
39

L, 0 N > O

OpenAD/F: A modular open-source tool for automatic differentiation of Fortran codes, ACM Trans.
Math. Softw. 34 (2008), pp. 18:1-18:36.

S.F. Walter, PyADOLC, https://github.com/b45chl/pyadolc.

S.F. Walter, AD in Python with Application in Science and Engineering, in Eighth EuroAD Work-
shop, The Numerical Algorithms Group, Oxford, UK (2009).

S.F. Walter, Algorithmic Differentiation in Python with PYADOLC and PYCPPAD, in EuroScipy
Conference, Leipzig, Germany (2009).

S.F. Walter and L. Lehmann, Algorithmic differentiation in Python with AlgoPy, J. Comput. Sci. 4
(2013), pp. 334—344.

S.F. Walter, A. Schmidt, and S. Koérkel, Adjoint-based optimization of experimental designs with
many control variables, Journal of Process Control 24 (2014), pp. 1504-1515.

A. Walther and A. Griewank, Getting started with ADOL-C, in Combinatorial Scientific Computing,
U. Naumann and O. Schenk, eds., Chapman-Hall, 2012, pp. 181-202.

Automatic Differentiation in R, https://github.com/quantumelixir/radx (2014).

Symbolic and algorithmic derivatives of simple expressions, https://stat.ethz.ch/R-manual/
R-devel/library/stats/html/deriv.html.

The R Project for Statistical Computing, http://www.r-project.org/.

Package numDeriv, https://cran.r-project.org/web/packages/numDeriv/numDeriv.pdf.
Scientific Computing Tools for Python — SciPy.org, http://scipy.org/about.html.

SWIG website, http://www.swig.org/.

Calculus — SymPy 1.0 Documentation, http://docs.sympy.org/latest/tutorial/calculus.html.
ADMB - Template Model Builder, http://www.admb-project.org/developers/tmb (2014).

The submitted manuscript has been created
by UChicago Argonne, LLC, Operator of Ar-
gonne National Laboratory (?Argonne?). Ar-
gonne, a U.S. Department of Energy Office of
Science laboratory, is operated under Contract
No. DE-AC02-06CH11357. The U.S. Govern-
ment retains for itself, and others acting on
its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce,
prepare derivative works, distribute copies to
the public, and perform publicly and display
publicly, by or on behalf of the Government.
The Department of Energy will provide public
access to these results of federally sponsored re-
search in accordance with the DOE Public Ac-
cess Plan. http://energy.gov/downloads/doe-
public-access-plan.

18

https://github.com/b45ch1/pyadolc
https://github.com/quantumelixir/radx
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/deriv.html
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/deriv.html
http://www.r-project.org/
https://cran.r-project.org/web/packages/numDeriv/numDeriv.pdf
http://scipy.org/about.html
http://www.swig.org/
http://docs.sympy.org/latest/tutorial/calculus.html
http://www.admb-project.org/developers/tmb

	Introduction
	SWIG Interface Generator
	Interface to the R language
	Interface to Python and NumPy
	Maintenance effort for future API changes

	Using the Generated Interface
	Using ADOL-C-computed derivatives in R
	Using ADOL-C-computed derivatives in Python

	Applications
	Space-time Gaussian process for wind speed in R
	Spatial example
	Space-time example

	Stochastic gradient descent and stochastic quasi-Newton in Python

	Conclusions and Further Work

